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WoPhO Selection Round Problem 5
The Rainbow
Attila Szabó, Grade 11
Leőwey Klára High School
Pécs, Hungary

1. A. We’re going to denote the radius of the drop as R. In order to find f we calculate the total
air resistant force acting on the drop: as the drop doesn’t accelerate, this force must be equal to the
gravitational force acting on the drop. Consider a small dA patch of the surface the radius drawn to
which has an angle of α with the vertical dircetion. Then the force fdA acting on the patch has a vertical
component fdA sinα (horizontal components of the force acting on symmetricly located patches cancel
each other out).

Now instead of the patch let’s imagine a horizontal spherical segment of height dh in a distance h
from the equator (positive downwards). The surface of this segment is dA = 2πRdh, and since all patches
of it have the same angle to the vertical, the vertical force acting on the segment can be calculated
as 2πfRdh sinα. It is easy to see that the sine of α is

√
R2−h2

R , using this, the force element is dF =
2πf
√
R2 − h2 · dh. The total air resistance is given by the integral of this over the domain of h: F =∫ R

h=−R dF = 2πf
∫ R
h=−R

√
R2 − h2dh = 2πf · π2R

2 = π2fR2. This force must be equal with mg = V ρg =
4
3πR

3ρg. Equating the two gives f = 4ρgR
3π = 2ρgD

3π (we have used that the diameter is twice the radius).
B. In order to determine the tangential component of the drag force we’re going to distract the

given quarter in such segments as mentioned in part A. Moreover, every segments will be distracted into
patches by vertical circles. The surface of one such patch will be dA = dβ

2π 2πRdh = Rdhdβ, where dβ is
the dihedral angle of the spherical wedge used to cut out the patch: the angle β is measured from the
central line of the quartersphere. Then the horizontal component of drag acting on the patch is fdA cosα
(α is defined the same way as in part A); thus the component acting in the direction of the central
line (the component perpendicular to this will be cancelled by patches at angles β and −β) is dF =
fdA cosα sin β = Rf cosαdh sin βdβ. We can express the cosine of α as h

R , thus dF = f · hdh sin βdβ.
The total force is given by

Fa =
∫ R

h=0

∫ π/2

β=−π/2
dF = f

∫ R

h=0
hdh

∫ π/2

β=−π/2
sin βdβ = f · R

2

2 · 2 = fR2.

Substituting f found in part A gives Fa = 2ρgD
3π ·

D2

4 = ρgD3

6π .
C. It is known that the pressure of curvature is given by p = 2σ/R. This pressure acts radially, thus the

force acting in one specific direction on a given patch is pdAn where dAn is the surface of the perpendicular
projection of the patch along the given direction. Summed up, the horizontal component of the surface
tension is given by pAn where An is the surface of the horizontal projection of the quartersphere: this is
a semi-great-circle, the area of which is πR2/2, thus the horizontal component of the surface tension is
2σ/R · π/2R2 = πσR = π/2σD.

D. At the greatest spherical drop Ft = 100Fa: πσDM

2 = 100ρgD
3
M

6π ; from this, DM =
√

3
100

π2σ
ρg = 1.51

mm.
2. A. Let β be the angle of refraction, one can see that the angle of income is α. It is known that the

normal of a spherical surface is the radius. Let O be the centre of the sphere, A the point of income of
the ray, B the point of the reflection and C the point where the ray goes out. Then angle OAB is β as
stated; from the equilateral triangle OAB OBA∠ will be β; from the laws of reflection then OBC∠ = β,
so will OCD∠ = β, and due to symmetry, the angle of refraction at point C will be α. In the quadrilateral
OABC three angles are known (β, 2β, β); from this, it follows that the angle at O is 2π− 4β; thus angle
COA = 4β. One can see from this that the central angle of point C is 4β − α, this will be the angle
of the normal at that point to the incident light. As the outgoing light has an angle α to this normal,
the requested angle is θ = (4β − α) − α = 4β − 2α. Now we’re going to calculate β: from Snell’s law,
sinα/ sin β = n, thus β = arcsin(sinα/n). Using this, θ = 4 arcsin(sinα/n)− 2α.

B. It is known that a small difference of a function can be calculated as ∆θ = (∂θ/∂α)∆α. By
calculating the derivative of the found function θ(α) it follows that ∆θ =

(
4 cosα√
n2−sin2 α

− 2
)

∆α. Now
we’re calculating the area of the cross-section between the central angles α and α+ ∆α: this is a circular
ring, the inner radius of which is R sinα, while the outer radius is R sin(α+ ∆α) = R(sinα+ cosα∆α):
the area of the ring is ∆A = R2((sinα + cosα∆α)2 − sin2 α) = 2R2 sinα cosα∆α. As the incoming
intensity is I0 all over the cross-section, the incoming power in this region is ∆P0 = 2I0R

2 sinα cosα∆α.
This power is lowered by transmittance and reflectance (denoted for a while as Re) at surfaces, thus the
outgoing power is ∆P = ∆P0T1T2Re = 2I0T1T2ReR

2 sinα cosα∆α.
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As the reflection of light is symmetrical in the coordinate φ, we can take the value of ∆φ = 2π and

∆P the power reflected all along the ring at coordinate θ. Then the power distribution function is

J = ∆P
∆θ · 2π = 2I0R

2 sinα cosα∆α · T1T2Re

2π ·
(

4 cosα√
n2−sin2 α

− 2
)

∆α
= I0R

2T1T2Re
π

sinα cosα
√
n2 − sin2 α

4 cosα−
√
n2 − sin2 α

=

= I0D
2T1T2Re
8π

sinα cosα
√
n2 − sin2 α

2 cosα−
√
n2 − sin2 α

.

C. We can see that there is an angle α where the denominator of the formula, 2 cosα−
√
n2 − sin2 α is

0: at this point, J runs to infinity, thus the greatest part of the light will be reflected in a small environment
of this angle. (Remark that over this angle, J is negative.) Solving the equation 2 cosα−

√
n2 − sin2 α = 0

gives, that sinα =
√

4−n2

3 . Substituting back in the formula for θ in part A: θM = 4 arcsin
(

4−n2

3n2

)
−

2 arcsin
(

4−n2

3

)
; at this angle, J(θM )→∞. Evaluating θM for the given value of ng gives θM = 41.9◦.

D. Let’s plot a graph of θ(α): it shows that the function has a maximum, that is, there will be no
reflected light over the maximum of θ, what is exactly θM . The numerical value of θM is 40.5◦ for the
violet light, 41.9◦ for green and 42.3◦ for red light. These mean that for the violet light there will be
no reflected light along the direction θ = θM,g, but there will be reflected light in this direction for the
red light. Consequently, as the critical θ grows monotonously with the wavelength, there will be some
reflected intensity for λ ≥ 550 nm. As stated before, at λ = 550 nm, the intensity runs to infinity, and as
the intensity—wavelength function is continous, it will decrease monotonously. The sketch can be seen
on Fig. 1: the only special point to be mentioned is the critical value of λ where the intensity jumps to
infinity.

 400  450  500  550  600  650  700  750

λ [nm]

3. A. We follow the convention that the medium value of a dispersion-related quantity belongs to
the wavelength of 550 nm. From this, the angular radius of the rainbow will be θ0 = θM,g = 41.9◦,
because the (roughly) parallel coming rays will get distracted by this angle the most intensely. Because
the sunrays come from a circle of angular radius δ/2, all points that would be sharp points in the image
of a parallel lightsource, will get blurred on a circle of diameter δ. Moreover, the rainbow would have an
angular thickness θM,r − θM,v = 1.76◦ because of the difference in the critical angle due to dispersion.
These two effects will superpone, thus the angular width of the rainbow will be 1.76◦+ 0.5◦ = 2.3◦. Thus
the angular radius of the rainbow is 41.9◦, while its angular diameter is 2.3◦.
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B. The angular radius of the main diffraction circle made by an aperture of diameter dm is θ =

arcsin
(

1.22 λ
dm

)
; according to the problem text, this equals to the angular width of the rainbow: from

this, 1.22 λ
dm

= sin ∆θ = 0.040; one can see that the greater λ is, the greater will be the acceptable
diameter dm, consequently, dm has to be calculated using the minimal λ of the visible spectrum, 390 nm.
Then dm = 1.22 λv

0.040 = 11.9 µm.
C. When falling down, the drag force acting on the small, slowly falling raindrops is 6πηrv due to

Stokes’ law. This drag should equate the gravitational force on the drop, mg = V ρg = 4
3πr

3ρg. Equating
the two force formulae gives the final velocity of the drop as v = 2

9
ρgr2

η = 1
18
ρgd2

η . As the drops are small,
this final velocity is small, too, thus the drop will reach it fast. For the sake of simplicity, we assume that
the final velocity is reached immediately. As the final velocity grows monotonously with the size of the
drop, the smallest drops will fall the most slowly, thus they will be found the most time after the rain.
The final velocity for the smallest drop that contributes to the rainbow is vm = 1

18
ρgd2

m

η = 4.3 · 10−3 m/s;
with this velocity it takes TM = s

vm
= 1.4 · 105 s to fall down the way s = 800 m− 200 m = 600 m.


