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WoPhO Selection Round Problem 8
Relativistic Images
Attila Szabó, Grade 11
Leőwey Klára High School
Pécs, Hungary

1. A. In this part we take c = 1 for simplicity. Let’s consider the process in the inertial frame of the
mirror. Let the impulse of the incident photon be (px, py) in this frame (the mirror moves in the −x
direction, +y direction points „upwards”). Then the impulse of the photon reflected from the standing
mirror is (−px, py) as the energy of the photon doesn’t change and the angle of incidence is the same as the
angle of reflection (this is well-known for standing mirrors). The energy of both photons isW =

√
p2
x + p2

y.
Now we go back to the rest frame: as the mirror moves with v to −x in this frame, the velocity of this
frame is v to the +x direction compared to the mirror frame. We can use the Lorentz transformation on
the energy–impulse four-vector to get the parameters of the incident and the reflected photon in the rest
frame. Due to the Lorentz transformation, the y-components of the incident and the reflected photons’
impulse are py; the energy of the photons can be calculated as:

Wi = W − pxv√
1− v2

; Wr = W − (−px)v√
1− v2

= W + pxv√
1− v2

.

Since the energy and the magnitude of the impulse of a photon is the same (as c = 1), sinα = py

Wi
and

sin β = py

Wr
. Substituting the found values of energies and tan γ = py

px
, sin δ = v gives

sinα = sin γ cos δ
1− cos γ sin δ ; sin β = sin γ cos δ

1 + cos γ sin δ .

Expressing sin β using α and δ (via mathematical programs e.g. Maple) gives

sin β = sinα cos2 δ

2(1 + cosα sin δ)− cos2 δ
= sinα cos2 δ

1 + sin2 δ + 2 sin δ cosα
= sinα(c2 − v2)
c2 + 2vc cosα+ v2 ;

we have used that sin δ = v, and substituted back the ignored terms of c. If α→ 0 then cosα = 1, thus

sin β = sinα c2 − v2

c2 + 2vc+ v2 ;

as for small angles sin x = x holds, the following comes:

α

β
= sinα

sin β = c2 + 2vc+ v2

c2 − v2 = (c+ v)2

(c+ v)(c− v) = c+ v

c− v
;

that was to be proven.
B. (a) Let’s examine the situation from the rest frame of the camera. Due to Lorentz contraction,

the distance of the object to the camera is L′ = L
√

1− v2

c2 , whilst its height does not change: H ′ = H.
However, the camera shows the image of the object that was in a distance L1 from it: since this point,
the distance covered by the light ct, while that of the object is vt: their difference is ct − vt = L′, thus
t = L′

c−v , so L1 = ct = L′

1−v/c = L
√

1+v/c
1−v/c = L

√
c+v
c−v . This is the distance of the object to the camera

that can be seen at the place of the camera: the image will be formed as if the object were in a distance
of L1. Using the formula for image height gives the height as h′ = H′f

L1
= Hf

L

√
c−v
c+v = h

√
c−v
c+v . Thus the

image will be smaller compared to the camera in rest.
(b) The rate of variation is ḣ′. We’re going to calculate this rate in the camera frame: due to Lorentz

dilatation, the eigentimespan can be calculated from the inertial timespan as dt′ = dt
√

1− v2

c2 , thus

ḣ′ = Hf

√
c− v
c+ v

(
1
L

).
= Hf

√
c− v
c+ v

−L̇
L2 = Hf

L2

√
c− v
c+ v

vdt

dt
√

1− v2

c2

= Hfv

L2
1

1 + v/c
.

(During an inertial timespan dt, the object and the camera get closer by vdt.) Thus the image height will
grow with a rate of HfvL2

1
1+v/c as seen from the camera reference frame.
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C. (a) We examine the process from the camera rest frame. The camera–mirror distance in this frame

is L1 = L
√

1− v2

c2 . As the mirror approaches the camera with v, the distance between the camera and

the mirror was L2 = L1
1−v/c = L

√
c+v
c−v when the light recorded at the examined moment was reflected (to

conclude this, we can use the same ideas as in 1. B. (a)).
Now we determine the parameters of the virtual image at this point. Since the perpendicularly in-

coming rays are reflected perpendicularly, the image points will be at the same vertical height as the
respective points of the camera: this causes that the width of the camera and its mirror image is the
same. Now check a light ray that comes from a point of the camera to the mirror covering a distance L2
horizontally and x� L2 vertically: if the distance of the image is L3, the tangent of the angle of incidence
and reflection is tanα = x

L2
, tan β = x

L3
; since x is small, tanα = α and tan β = β can be used. Using

the small angle limit for the relativistic mirror gives c+v
c−v = α

β = tanα
tan β = x/L2

x/L3
= L3

L2
, thus L3 = L2

c+v
c−v .

The size of the image is D while its distance from the mirror is L3.
Consequently, the camera records an image of width D in an effective distance L′ = L2 + L3 =

L2

(
1 + c+v

c−v

)
= L2

2c
c−v = L

√
c+v
c−v

2c
c−v . Using the formula of image size given by the problem gives

d = Df
L′ = Df

L

√
c−v
c+v

c−v
2c .

We’re going to calculate the rate of change in the camera frame (since the video will show this). A
very similar calculation as in part 1. B. (b) gives

ḋ = Df

√
c− v
c+ v

c− v
2c
−L̇
L2 = Df

L2

√
c− v
c+ v

c− v
2c

vdt

dt
√

1− v2

c2

= Df

L2
v

2c
c− v
c+ v

.

This is the rate of change of the image width.
(b) The difference between the reading of the clocks is the time required by the light to cover the

distance to the mirror and back:

A = 2L2

c
= 2L

c

√
c+ v

c− v
;

obviously the image of the clock shows an earlier time. Consequently, the reading t′ of the image and
that t of the clock is connected by t = t′ + 2L

c

√
c+v
c−v . Taking differentials: dt = dt′ + 2

cdL
√

c+v
c−v . As the

distance in the camera frame is given by L1 = L
√

1− v2

c2 , its differential is dL1 = dL
√

1− v2

c2 ; on the
other hand, this is dL1 = −vdt due to the definition of the velocity of the mirror in the camera frame:
consequently, dL = − vdt√

1− v2
c2

. Substituting this into the previous equation:

dt = dt′ − 2v
√

c+ v

(c− v)(c2 − v2)dt = dt′ − 2v
c− v

dt

dt′

dt = c+ v

c− v
;

thus during each tick of the clock one can observe c+v
c−v ticks of the image, that is,

B = c+ v

c− v
.

The task is to determine L from A and B: it is easy to see that L = A√
B
c
2 . This was to be found.

(c) If the camera reaches the mirror, L comes to be 0, the difference between the readings will be
A = 2L

c

√
c+v
c−v = 0, that is, both clocks will show the same time. This was to be proven.

2. A. We’re going to determine the apparent angular radius t time after the „explosion” (we define θ(t)
this way). In order to do so, let’s check a light ray that reaches the observer at an angle α measured from
the Earth–star central line. Let’s assume it has travelled τ from the star to the observer; consequently,
it started from the surface of the star star t − τ after the explosion; at this time, the radius of the star
was R0 + v(t − τ). We can use the law of cosines for the triangle formed by the observer, the centre of
the star and the light source at the vertex of the observer:

(R0 + v(t− τ))2 = L2 + c2τ2 − 2Lcτ cosα



3
(c2 − v2)τ2 + 2(v2t+R0v − Lc cosα)τ + (L2 − (R0 + vt)2) = 0.

The number of real roots of this quadratic equation depends on the sign of its discriminant: if D ≥ 0
there is at least one solution for τ (therefore, at the specific angle α there will be light); however, if D < 0,
there will be no corresponding light source: at the boundary of the star, D = 0 will hold:

D = 4(v2t+R0v − Lc cos θ)2 − 4(c2 − v2)(L2 − (R0 + vt)2) = 0

v(R0 + vt)− Lc cos θ = ±
√
c2 − v2

√
L2 − (R0 + vt)2

cos θ = v

c

R0 + vt

L
±
√

1− v2

c2

√
1− (R0 + vt)2

L2

Let α and β such acute angles that cosα = v
c and cosβ = R0+vt

L . It is easy to see that cos θ must be
positive, therefore we retain the positive root: using the given substitution, it will be cos(α− β), thus

θ = α− β = arccos
(v
c

)
− arccos

(
R0 + vt

L

)
.

Now we take into account that the observer notes the phenomenon at t0 = L−R0
c due to the speed of

light; that is, it’s more natural to measure time on a time scale t′ = t− t0: using this substitution, we get

θ = arccos
(v
c

)
− arccos

(
R0 + vt′ + v

cL−
v
cR0

L

)
= arccos

(v
c

)
− arccos

(
v

c
+

c−v
c R0 + vt′

L

)
.

This way depends the angular size of the star on time.

Remark. If t′ is small, then
c−v

c
R0+vt′

L
is small, too, so we can approximate the formula of θ to the first order

in it:

θ = −
c−v

c
R0 + vt′

L
· arccos′

(
v

c

)
= 1√

1 − v2/c2

c−v
c
R0 + vt′

L
.

We should note, that at t′ = 0 this is definitely smaller than arcsin
(

R0
L

)
, the apparent radius of the star before

the explosion: this problem is caused by that during calculations we haven’t checked whether t− τ > 0, in other
words, whether the star has exploded already. At small values of t′ it’s possible that we took into account such
extrapolated states of the star in which its radius is smaller than R0 that doesn’t happen actually. This problem
can be fixed the most easily this way: the radius of the star is

θ = max
[

arcsin
(
R0

L

)
; arccos

(
v

c

)
− arccos

(
v

c
+

c−v
c
R0 + vt′

L

)]
:

this formula discards effects of extrapolation explicitly.

B. Since the system is rotationally symmetric about the Earth–star central line, the image of the star
must be symmetric, too: this means, that the image will be formed of circular ring(s), the task is to
determine its radius/their radii.

Now we determine when (at which time instant t′) will the observer see the blackout at an angle α
to the centre of the star. Then the observer will obviously see the star when its radius was Rm. If the
distance that the light had to cover was x then we can write down the law of cosines for the observer
vertex of the triangle observer–centre of star–light (or darkness) source:

R2
m = L2 + x2 − 2Lx cosα

x2 − 2Lx cosα+ (L2 −R2
m) = 0

The smaller root of this equation in x (the larger root corresponds to the other side of the star, the light
from that never reaches the observer) is

x = L cosα−
√
R2
m − L2 sin2 α
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The time required by the star to expand to Rm is t1 = Rm−R0

v , while the time required by the light to
reach the observer is t2 = x

c ; the time when the observer sees the blackout is t = t1 + t2, or in the epoch
t′ introduced before:

t′ = t1 + t2 − t0 = R0
v − c
vc

+ Rm
v

+ x− L
c

= R0
v − c
vc

+ Rm
v
− L(1− cosα) +

√
R2
m − L2 sin2 α

c

The plot of both θ(t′) both α(t′) for some R0, Rm and L can be seen in the figure. One can see that the
plot of α(t) is tangent to that of θ(t).

The plot means the following: at t′ ≈ 5 s the edge of the star starts to expand and the apparent
radius starts to grow. At t′ ≈ 135 s, there appears a dark spot in the middle of the star (this is the first
sign of the blackout of the star) that starts to grow and at t′ ≈ 170 s it will become as large as the star
itself: this means, that after this point teh whole star will appear dark. The apparent shape of the star
is a bright circular ring, the apparent radii of which are α(t′) and θ(t′) that can be determined using the
derived formulae: at some point in time, α(t′) = θ(t′) will occur: after this point, the star will look like a
dark circle of radius θ(t′).
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