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WoPhO Selection Round Problem 2
Two-ball body
Attila Szabó, Grade 12
Leőwey Klára High School
Pécs, Hungary

Part A
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Part B
1 The body will constitute pure rolling, therefore the contact point with the ground will always be

a momentary rotation center of the motion. The kinetic energy of the body is therefore 1
2Iω

2 where
I is the moment of inertia with respect to that point. Now we’re going to calculate this moment of
inertia at the moment of the collision. The cosine of α in the figure is clearly cosα = − sin(α − 90◦) =
−R2−R1
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. From the law of cosines we get for the distance of the CM and the rotation center
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The kinetic energy is on the other hand the change of gravitational potential energy of the system: that
of the lower ball doesn’t vary as its CM moves only horizontally, but the potential energy of the upper
ball changes from (with choosing V = 0 at ground level) m2g(2R1 +R2) to m2gR2. By the conservation
of energy:
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The velocities of the balls’ centers can be found from the fact that the ground contact point is the
momentary center of rotation, therefore the velocity of each point of the body is rω where r is the
distance of this point and the ground contact point and the velocity vector is perpendicular to the line
joining them (this is shown in the sketch). The distance of the center of ball 1 to the ground contact
point is R1, thus its velocity is
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Figure 1. The setup of the system immediately before the collision in Part B.1.

2 As there is no friction in the system, there is no horizontal force at all, therefore the horizontal
component of the system’s momentum is conserved and since it was 0 initially, it will be 0 in the final setup
as well. Consequently, the horizontal component of the CM’s velocity is 0, thus it will move vertically.
The center of the lower ball must have a purely horizontal velocity, as the contact point with the ground
can only move so and its relative velocity to the mentioned center is horizontal too (it is a peripheral
speed related to a vertical position vector).

The vector from the CM to the center of the lower ball in the final state (Figure 2) is r1 =
x0(− sinα, cosα), thus the vector of the relative velocity is vrel,1 = ω × r1 = x0ω(cosα, sinα). The
only way to decompose this into the difference of a horizontal and a vertical velocity vector (as required
by the above conditions) gives the velocity of the CM as vCM = −x0ω sinα (and that of the center of the
lower ball as v1 = x0ω cosα).

The kinetic energy of the system right before the collision is given as the sum of the translational
kinetic energy due to vCM and the rotational energy: this must be equal to the reduction of potential
energy, which is 2m2gR1 (see above):
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(We have used that sin2 α = 1− cos2 α = 4R1R2
(R1+R2)2 .)

The velocity of the center of the lower ball is horizontal and its magnitude is
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The distance vector from the center of ball 1 to that of ball 2 is d = (R1 +R2)(sinα,− cosα) so the
relative velocity of the center of ball 2 to that of ball 1 is vrel = ω × d = (R1 + R2)ω(− cosα,− sinα);
since the velocity vector of the center of ball 1 is v1 = (x0ω cosα, 0), that of ball 2 is

v2 = ω(−x′0 cosα,−(R1 +R2) sinα).

The angle β between this vector and the positive x-axis is given by
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while its magnitude is
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The specialities of the velocities are indicated in Figure 2. (Note that the momentary center of rotation
will be the intersection of the vertical through the center of ball 1 and the horizontal through the CM:
this follows from the directions of the velocities of the center of ball 1 and the CM.)

Figure 2. The setup of the system immediately before the collision in Part B.2.

Part C
Both contact points with the ground will move without slipping. Consequently, if the body rotates

about its symmetry axis by some angle, these points will move by distances the ratio of which is R2/R1:
this means that the orbits of these points are two concentrical circles with radii of this ratio. The common
center of these circles will be a permanent center of the rotation, therefore we will calculate with respect
to axes passing through this point. Now we determine the distance D of this center to the CM. As the
center O must be the intersection point of the symmetry axis O1O2 and the plane the body is placed on,
we can write down the following equation due to the similar right triangles OO1T1 and OO2T2:
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However, the line joining the touching points of the body and the plane is the momentary rotational
axis of the body due to the slipless motion. Therefore, the angular velocity vector ω must be in this
line. The angle γ in the figure can simply be expressed by sin γ = R2−R1
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→ cos γ = 2
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the components of this vector in the principal coordinate system are ω1 = ω sin γ and ω2 = ω cos γ.
The moments of inertia with respect to axes passing through this point are I⊥ + (m1 + m2)D2 and I‖,
respectively.

Now we’re going to write down the total energy of the system. The kinetic energy can be written
solely as rotational energy with respect to point O: using the above expressions of the moments of inertia
and angular velocities we find
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The CM of the system is moving on a circle in a plane somewhat above the inclined plane and parallel
to it. The radius of this circle is R = D cos γ = 2(R4
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gravitational potential energy at the state θ = π/2, we can simply express the potential energy as
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As there is no energy loss due to friction, the total energy K + V is constant.
1 The energy initially is 0 as ω = 0 and θ = π/2: due to the conservation of energy, this will hold

all along the motion. Therefore, the less is the potential energy, the more is the kinetic energy and
so the velocities. From the expression of V we can see that the minimal potential energy at θ = 0 is
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2 The magnitude of ω is maximal in this point, therefore it doesn’t change in the first order. However,
its direction is varying over time, and this causes an angular acceleration like in the case of centripetal
acceleration. We are now going to calculate the angular velocity Ω = θ̇ of the rotation of the axis T1T2:
as its vector is perpendicular to the inclined plane, we find ω̇ = Ω× ω and so |ω̇| = Ωω.

It is easy to see that the velocities of the points lying on the axis of the body can be expressed as
peripheral speeds due to Ω and ω as well. In the special case of the CM we’ll find them as vCM =
D sin γ ·ω = D cos γ ·Ω, thus Ω = ω tan γ. Consequently, the requested “centripetal” angular acceleration
is (we have used that tan γ = R2−R1
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3 We have the equation θ̇ = Ω = ω tan γ; substituting this into the conservation of energy yields that
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is constant, therefore its time derivative is 0. As the only parameter varying by time is θ, we’ll have a
differential equation in θ. This equation may be simplified and as θ is very small, we may use first-order
approximations. Using these simplifications we’ll get
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Figure 3. The setup of the system in Part C.


