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WoPhO Selection Round Problem 4
Atmospheric evaporation by Jeans escape
Attila Szabó, Grade 12
Leőwey Klára High School
Pécs, Hungary

Part 1. Exobase height
(a) According to the ideal gas law: pV = NkT → nV (h) = N/V = p(h)/kT . The mean free path is

consequently λ(h) = kT/σp(h), specially, for the height of 250 km, p(h) = 21 µPa and T = 1000 K, thus
λ = 3.288 km.

(b) By definition, λ(hEB) = H; according to the above expression, kT/σp(hEB) = H, so p(hEB) =
kT/σH = 1.151 µPa. It follows from the provided pressure function that pref/p(hEB) = exp

(
hEB−href

H

)
,

thus hEB = href +H ln (pref/p(hEB)) = 424.2 km.
Part 2. Atmospheric escape flux
(a) By integration with respect to ϕ between −π and π and with respect to θ between 0 and π (these

are the domains of the respective angular variables) we get the following distribution for the modulus of
the velocity:

w(v)dv =
( m

2πkT

)3/2
exp

(
−mv

2

2kT

)
v2dv · 2π · 2 =

√
2m3

πk3T 3 exp
(
−mv

2

2kT

)
v2dv.

The probability of the velocity being more than a given value V is the integral
∫∞

v=V
w(v)dv. Consequently,

the requested probability is

P =
√

2m3

πk3T 3

∫ ∞
v=vesc

exp
(
−mv

2

2kT

)
v2dv = 2.589 · 10−3,

using the numeric values of vesc =
√

2GMEarth/(REarth + hEB) = 1.084 · 104 m/s, m = 1.008 u, k =
1.381 · 10−23 J/K and T = 1000 K.

(b) Consider a surface element of dA the normal vector of which is radial. It is easy to see that if
a gas particle has a velocity greater than the escape velocity, it will escape, regardless of its direction,
having it has a radial component pointing upwards. This is true since in the exosphere we may ignore
any collision that would turn the particle back.

Now we calculate the volume out of which a particle with velocity v can go through dA is a short
time dt. It is clearly a prism, the vector of the generator of which is vdt. The altitude of such a prism is
vdt · cos θ if θ is the angle of v to the radial upward direction (i.e. we choose the +z direction to point
radially upwards), therefore the volume of this prism is d2V = v cos θ · dAdt. The particles of velocity v
will go through the chosen area segment during dt out of such a volume.

The number of hydrogen atoms in this volume is d2N = nHv cos θ · dAdt and according to the
Maxwellian distribution, the number of atoms having a velocity vector v among them is:

d5Nv = d2N · f(v)d3v =
( m

2πkT

)3/2
exp

(
−mv

2

2kT

)
v2 sin θdvdθdϕ · nHv cos θdAdt =

= nH

( m

2πkT

)3/2
exp

(
−mv

2

2kT

)
v3dv · sin θ cos θdθ · dϕ · dAdt.

Integration with respect to θ between 0 and π/2 (since only the upward moving particles are interesting
now) and with respect to ϕ between −π and π gives the following number-of-atoms differential:

d3Nv = nH
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2πkT

)3/2
exp

(
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2kT

)
v3dv · 1

2 · 2π · dAdt = nH

√
m3

8πk3T 3 exp
(
−mv
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)
v3dvdAdt.

So many atoms of velocity between v and v + dv will leave through the area dA in time dt. Therefore,
the differential of the flux, which is the number of atoms going through unit surface in unit time is

dΦ = d3Nv

dAdt = nH

√
m3

8πk3T 3 exp
(
−mv

2

2kT

)
v3dv.

The flux of escaping atoms is the integral of this flux differential between vesc and ∞:

Φ = nH

√
m3

8πk3T 3

∫ ∞
v=vesc

exp
(
−mv

2

2kT

)
v3dv = 7.504 · 1011 1

m2s
with the same numeric values as above.
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Part 3. Evaporation of the atmosphere
(a) The force acting on the surface of the Earth by the atmosphere is F = P0 · A = P0 · 4πR2

Earth
which obviously comes from the gravity acting on the atmosphere: F = mg, so m = 4πR2

EarthP0/g. The
number of molecules in the atmosphere is therefore N = NA ·m/Mair = 1.115 · 1044, so the number of
hydrogen molecules is NH2 = χHN , thus the number of hydrogen atoms is

NH = 2χH ·N = 1.226 · 1038.

(b) As the concentration of hydrogen atoms won’t change at the exobase, the flux of escaping atoms
is constant as well; for the total surface of Earth, the number of escaping atoms in unit time is IH =
Φ · 4π(REarth + hEB)2 = 4.35 · 1026 1/s, so the time required for the evaporation of half of the hydrogen
atmosphere is

τH = NH/2
IH

= 1.41 · 1011 s = 4465 years.

(c) Doing the integral as in Part 2b, but with the data nHe = 2.5 · 1012 m−3 and mHe = 4.0026 u we
find ΦHe = 2.190 · 104 1

m2s , thus IHe = ΦHe · 4π(REarth + hEB)2 = 1.27 · 1019 1/s. The number of helium
atoms is NHe = NχHe = 5.574 · 1038. The atmospheric half-life of helium is thus

τHe = NHe/2
IHe

= 2.19 · 1019 s = 6.95 · 1011 years.

Remark. The assumption that the concentration of atoms remains constant over the disappearing of a large
part of those atoms is really weird. It’s more realistic to assume that the hydrogen concentration is proportional
to the total number of hydrogen atoms. In this case, if the number of atoms at a moment is N , the intensity of
evaporation is I = N IH

NH
: it is easy to see, that this intensity is the negative time derivative of N , so we get the

following differential equation:

Ṅ = −N IH

NH
→ N(t) = N(0) exp

(
− IH

NH
t
)
,

thus the half-life is

τH = ln 2NH

IH
= 1.95 · 1010 s = 6190 years for hydrogen and

τHe = ln 2NHe

IHe
= 3.04 · 1019 s = 9.63 · 1011 years for helium.

We can see that the half-life in this case differs by a factor of 2 ln 2 = 1.38, which is totally acceptable since with
the roughly given input data we can only give an order-of-magnitude estimate and the sought effect is of 9 orders
of magnitude, way larger than this factor.


