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WoPhO Selection Round Problem 5
Motion in the electrostatic field of a dipole
Attila Szabó, Grade 12
Leőwey Klára High School
Pécs, Hungary

Part 1. Motion of the dipole
1 The torque acting on an electric dipole is given in the vector form by τ = p × E, where p

is the moment of the dipole, p = qd and E is the electric field at the centre of the dipole. Let θ
be the angle between the line joining the point charge to the centre of the dipole and p. Using this
notation, the magnitude of torque becomes τ = −Eqd sin θ = − 1

4πε0

Q
L2 qd sin θ which equals to Iθ̈, where

I = 2m(d/2)2 = md2/2 is the moment of inertia. Using the standard small-angle approximations the
equation of rotation becomes

− 1
4πε0

Qqd

L2 θ = md2

2 θ̈

θ̈ = − 1
2πε0

Qq

mdL2 θ.

This is a harmonic equation, the solution of which is a harmonic oscillation with angular frequency
ω =

√
1

2πε0

Qq
mdL2 , the period is therefore

T = 2π
ω

= 2π

√
2πε0

L2md

Qq
.

2 As the force acting on each point charges are in the line joining them to the charge Q, there is no
torque exerted on the dipole with respect to that charge. Consequently, the angular momentum with
respect to the fixed point charge is constant, I’ll denote it by N as L is used already. Initially, N = 2m·Lu,
at a distance r, N = 2m · rvt1: equating them gives

vt1 = Lu

r
.

The electric potential energy of the dipole is given by (using first-order approximations in d)

W (r) = 1
4πε0

(
Qq

r + d/2 −
Qq

r − d/2

)
= − Qq

4πε0
d

r2 .

The conservation of energy between the initial and the examined state:

− Qq

4πε0
d

L2 + 1
2 · 2mu

2 = − Qq

4πε0
d

r2 + 1
2 · 2mv

2
t1 + 1

2 · 2mv
2
n1

mL2u2 − Qqd
4πε0

L2 =
mL2u2 − Qqd

4πε0

r2 +mv2
n1

vn1 =

√(
L2u2 − Qqd

4πε0m

)(
1
L2 −

1
r2

)
.

3 If r < L, the second factor in the above expression is negative; as the square root must real, the
first factor must be negative as well, that is, L2u2 − Qqd

4πε0m
< 0. The critical value of u is then

vcr =
√

Qqd

4πε0mL2 .

4 Initially, the distance won’t change, but as radiation effects start to take place, the energy of the
system will decrease: we may interpret it as u becoming lower, lower than vcr. This means, that the
dipole diverts from the circular orbit and as the radial velocity becomes larger with r becoming smaller,
the distance will converge to 0 with an increasing speed: this is shown in the sketch.
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5 As in the case u < vcr r must be lower than L, the radial velocity will point towards the fixed
charge, i.e. vn1 = −ṙ. Substituting the expression for vn1 into this differential equation:

dr
dt = −

√
L2(v2

cr − u2)
(

1
r2 −

1
L2

)
=
√

(v2
cr − u2)L

2 − r2

r2

− r dr√
L2 − r2

=
√
v2

cr − u2 dt

Integrating both sides:[√
L2 − r2

]r1

r=L
= t
√
v2

cr − u2

t1 =

√
L2 − r2

1
v2

cr − u2 =
√

3
2

L√
v2

cr − u2
.

(I have used the given r1 = L/2 value in the last step. Note that the dipole will get to the point charge
in a finite time, L/

√
v2

cr − u2, this reasons that in the previous sketch the dipole eventually reaches the
fixed charge.)

Part 2. Motion about the fixed dipole
1 The distance between the charge and the respective charges of the dipole using first-order approxi-

mations in d:

r− =
√
r2 + d2

4 − dr cos θ = r − d cos θ
2 ; r+ =

√
r2 + d2

4 + dr cos θ = r + d cos θ
2 ;

using these expressions we obtain the formula of the electric potential:

ϕ = q

4πε0

(
1

r + d cos θ/2 −
1

r − d cos θ/2

)
= − q

4πε0
d cos θ
r2 .

2 E = −∇ϕ; using the cylindrical expression of the gradient:

En = −∂ϕ
∂r

= − q

2πε0
d cos θ
r3 ; Et = −1

r

∂ϕ

∂θ
= − q

4πε0
d sin θ
r3 .

3

τ = rFt = rQEt = −Qqd4πε0
sin θ
r2 .

4 The angular momentum of the charge with respect to the centre of the dipole is N = 2mrvt2 =
2mr2ω = 2mr2θ̇. The time derivative of N2/2 is

d
dt

(
1
2N

2
)

= NṄ = Nτ = −2mr2θ̇ · Qqd4πε0
sin θ
r2 = −Qqdm2πε0

sin θ · θ̇ = d
dt

(
Qqdm

2πε0
cos θ

)
.
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Integrating both sides with respect to time gives

1
2N

2 = Qqdm

2πε0
cos θ + C.

Using the condition N = 2m · Lu at θ = 0 we get C = 2m2L2u2 − Qqdm
2πε0

and N2/2 = 2m2r2v2
t2 gives

2mr2v2
t2 = 2m2L2u2 + Qqdm

2πε0
(cos θ − 1)

vt2 =

√
L2u2

r2 + Qqd

4πε0mr2 (cos θ − 1)

5 Using the conservation of energy:

1
2 · 2mu

2 − Qqd

4πε0L2 = −Qqd4πε0
cos θ
r2 + 1

2 · 2m
(
L2u2

r2 + Qqd

4πε0mr2 (cos θ − 1)
)

+ 1
2 · 2mv

2
n2

mu2 − Qqd

4πε0L2 = −Qqd cos θ
4πε0r2 + mL2u2

r2 + Qqd cos θ
4πε0r2 − Qqd

4πε0r2 + 1
2 · 2mv

2
n2

mL2u2 − Qqd
4πε0

L2 =
mL2u2 − Qqd

4πε0

L2 + 1
2 · 2mv

2
n2

vn2 =

√(
L2u2 − Qqd

4πε0m

)(
1
L2 −

1
r2

)
= vn1.

6 As I have noted at the end of the previous part, vn1 = vn2, thus the differential equation to be
written down is the same in the two cases as well, like the solutions. Therefore,

t2 = t1 =
√

3
2

L√
v2

cr − u2
,

where vcr =
√

Qqd
4πε0mL2 as in Part 1.

Part 3. Circular motion
1 We may use the formula for vt2 derived in Part 2 as the rod doesn’t exert any torque upon the

point charge. Taking the restriction r = L into account gives for the tangential (and thus total) velocity

v(θ) =
√
u2 + Qqd

4πε0mL2 (cos θ − 1).

It’s easy to see that the greater is cos θ the greater is v, therefore the maximal velocity belongs to θ = 0
and is vmax = u. The minimal velocity is bit more difficult to find. If v(π) =

√
u2 − Qqd

2πε0mL2 is real
then the charge will reach this position with minimal cos θ and this expression gives the minimal velocity.
However, if the above expression is imaginary (i.e. u2− Qqd

2πε0mL2 is negative) then the charge won’t reach
the mentioned state but turns back halfway. In this case, vmin is 0. With a small mathematical trick we
can get a unified expression for vmin:

vmin = <
(√

u2 − Qqd

2πε0mL2

)
.

2 The centripetal acceleration of the point charge is a = −v2/L: this acceleration must be provided
by the normal electric force and the rod force:

−2mv2

L
= QEn +N

N = −2m
u2 + Qqd

4πε0mL2 (cos θ − 1)
L

+ Qq

2πε0
d cos θ
L3 = Qqd

2πε0L3 −
2mu2

L
,

which is independent of θ.
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3 If the force needed to hold the charge on course is 0, then it will be able to move along it without

the rod. The condition is thus N = 0, from which,

uc =
√

Qqd

4πε0mL2 = vcr,

being not too surprising knowing the found similarities of the motion.
We need to consider that u2

c −
Qqd

2πε0mL2 = − Qqd
4πε0mL2 < 0, thus the charge cannot go along a full circle.

Solving the equation

v(θ) =
√
u2
c + Qqd

4πε0mL2 (cos θ − 1) = 0

gives cos θ = 0, thus θ = 90◦. Therefore, the point charge will initially bounce back and forth between
θ = ±90◦. Due to radiation, the object will lose energy, this can be taken into account by slightly
decreasing u: in the equation

v(θ)r =
√
L2u2

c + Qqd

4πε0m
(cos θ − 1) = 0

this will result in a slight decreasing of (cos θ− 1) and so that of θ. As u gets smaller than uc, the charge
is going to approach the dipole faster and faster (compare with Part 2.6). These specialities of the motion
(the decreasing of θ may be exaggerated) are indicated in the sketch.


